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1. STATEMENT OF THE PROBLEM 

At the risk of belaboring the obvious, we may point out that a system design 
and its hardware implementation are never completely identical. Design values, when 
translated into equipment specifications, usually include permissible deviations (toler- 
ances) that reflect the degree of performance considered acceptable. Tolerances that 
are too “tight” are generally wasteful of money and effort, while those that are too 
liberal could compromise performance. 

In control systems, once nominal values have been established for component 
gains and time constants, there remains the problem of determining the effect of de- 
viations from them. A brute-force approach consists of what we may euphemistically 
call a “parameter study,” in which all combinations of selected parameter values are 
examined with respect to resultant system performance. When a large number of 
parameters are involved, such a task becomes unmanageably large. 

A rational approach to the problem is contained in the methods of sensitivity 
theory. The concept of sensitivity is an old one in control theory; and, indeed, one 
of the primary virtues of the principle of feedback was that it provided a degree of 
insensitivity to parameter variations in the forward loop. This idea is expanded upon 
in Sec. 3.1.1. 

The modern theory of sensitivity is concerned with determining the effects of 
parameter variations on system performance in a broad sense. It embraces the 
usual frequency-response methods for single-input/single-output systems, as well as 
state-variable representations and sampled-data, multivariable, and optimal control 
systems. The fact that significant theoretical contributions still appear is indicative 
of the formative state of the theory. Nevertheless, the foundation is sufficiently firm 
to be extremely useful in system design. 

An intelligent use of these methods provides: a framework for the rational 
specification of system component tolerances; and a quantitative evaluation of how the 
system is affected by parameter deviations. 
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2. STATE OF THE ART 

The inherent ability of a feedback system to minimize the effect of parameter 
deviations has long been recognized. In fact, this reduction in system sensitivity was 
originally employed as a quantitative measure of the advantages of feedback. (2) The 
measure of sensitivity, as first defined by Bcde(2) (and expressed in frequency re- 
sponse terms), had remained unchanged for almost a decade. It is still a sound tool 
for evaluating the performance quality of a feedback control system in the light of 
sensitivity requirements. 

With the emergence of some of the newer ideas in control theory (root-locus, 
state-variable, sampleddata, multivariable systems, etc. ) , a need developed for an 
expanded notion of the classical concept of sensitivity. Studies by Ur, (3) Huang, (4) 
McRuer , 6) and Rung(7) developed measures of sensitivity for the closed-loop poles 
of a system in terms of open-loop gain and of open-loop poles and zeros. Questions 
of sensitivity for sampled-data systems were considered by Lindorff(14), and meas- 
ures of sensitivity for multivariable systems were developed by Cruz. (13) 

A basic contribution was made by Horowitz, (15~ 19) who showed that sensi- 
tivity analyses need not be restricted to small parameter variations. A natural con- 
sequence of this result -- namely, that a conventional linear system could be designed 
to cope with large parameter variations -- inevitably posed the question of whether 
(in many cases) an adaptive system is really superior to a well-designed conventional 
system. Two studies(30,31) in the literature apply Horowitz’s technique to control 
problems that were thought to be incapable of solution by conventional linear methods. 

With the questions of control system sensitivity in virtually definitive form 
at present, attention is being focused on sensitivity considerations in optimal control 
systems. Here the basic problem is essentially the following. Given a system for 
which an optimal control function has been calculated. The control is optimal in the 
sense that a prescribed function has been minimized (or maximized). The question 
arises, “How do variations in system parameters affect the performance function?” 
Very little work of any significance has been done on this problem. Dorato(3g) pro- 
posed a measure of sensitivity for this case in which he also outlined a computational 
procedure. The numerical difficulties, however, Are formidable, and computer 
solutions are mandatory for any except the most trivial cases. Pagurek(g’ 13) con- 
sidered the general problem from a more unified point of view and defined a sensitivity 
function as the derivative of the optimal performance function with respect to the 
variable system parameter. His treatment has a theoretical elegance that is poten- 
tially very useful. However, it also exhibits a formidable computational complexity, 
and, perhaps equally important, his sensitivity measure is such that a parameter 
variation may actually improve the performance function. ‘Ibis would appear to he a 
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semantic and perhaps logical deficiency that is not in harmony with the usual inter- 
pretation of a sensitivity function. In this remet, the definition proposed by Rohrer 
and Sobral(28) is superior, in that any system deviations lead to degradation of the 
performance function. 

In short, sensitivity theory for optimal control systems is still in its for- 
mative stages and has not yet reached the definitive form that characterizes feedback 
control systems. 
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3. RECOMMENDED PROCEDURES 

3.1 MEASURES OF SENSITIVITY 

In general terms, the basic problem is to provide a quantitative measure of 
the deviation of a system function when the elements that comprise this function vary 
in some prescribed manner. This degree of dependence, or sensitivity, is conveni- 
ently expressed in terms of the ratio of percentage ,change in the function to percentage 
change in the parameter ; viz. , 

aY 

SY = -F ( 1 x ay P =-- X ax 

( > 
Y ax - 

X 

The form of this expression suggests the alternate definition 

SY a (any) z- X a mw (2) 

Historically, this representation has been used to indicate the ability of a 
feedback loop to decrease the sensitivity of the overall transfer function to variations 
in the parameters of the open-loop function. However, the basic idea is useful in 
studying the dependence of any system function on any parameter. This requires a 
slightly generalized version of the classical concept of sensitivity. In Sets. 3.1. l- 
3.1.5, various specialized sensitivity functions, together with their respective 
interpretation and areas of application, are developed. 

3.1.1 Svstem Transfer Function 

The classical feedback configuration is shown in Fig. 1. Let 

c @1 = T (8) = Rts) 
G W 

1 + G(s)H(s) (3) 

denote the overal system transfer function. 

We are interested in ascertaining the change in T (6) due to small,changes in 
G (6). Using the sensitivity function defined by Eq. (l), we have? 

T G aT SC =?;.s= 
1 1 

1 + GH E1 (4) 

t The argument, a, will be dropped whenever it Is convenient and where no ambiguity 
results, 
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Figure 1. Classical Feedback Configuration 

A well-designed systemTwill exhibit a low sensitivity over some predetermined 
frequency range. Obviously, SG + 0 for IG H 1 + 0) 
SGT+lfor IGHI 40. ?! 

a great deal of feedback), while 
With no feedback (H = 0), SG = 1. 

In the case where Sz > 1, the system without feedback is superior to one 
with feedback, as far as sensitivity to parameter changes is concerned. In other 
words, the use of feedback is no assurance in itself that sensitivity to parameter varia- 
tions is diminished. This idea is intimately related to the fact that over a frequency 
range of interest, there may indeed be positive feedback. Bade(2) has shown that? 

jen[s&w)ldw = o 
0 

which means that in any practical system there is as much positive feedback as 
there is negative feedback. The problem is therefore one of specifying G and H such 
that, in the frequency band of interest, purely negative feedback is obtained. 

Consider, for example, the system of Fig. 1 with 

G (8) = 
K 

s (9 + a) ’ 
H (8) = 1 

and where a and K are positive constants. We readily find that 

T 1 
SG = 

s (s + a) 
1 + G(s) = s(s+a)+K 

(5) 

(6) 

t Assuming that the open-loop transfer function has at least two more poles than zeros; 
or equivalently, if 1 GH 1 - 0 at greater than 6 db/octave. 
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In terms of frequency response, we have 

Thus 

which 

of the 

2. 2 
w(w+a2) 

K2 - 2Kw2+w2(w2+a2) 

-1 a 
= tan -1 au - - tan 

-0 (K - w2) 

(7) 

(8) 

IsG(ju)l> 1 for o2 > + 

obviously, the greater the value of K, the greater the frequency range in 
feedback is effective for reducing the sensitivity parameter variations. 

Evaluation of Sz (j ) w is most conveniently accomplished from a Nyquist plot 
open-loop transfer function. From Eq. (4) 

(9) 

The vector [l + L(jo)] is shown in the Nyquist plot of Fig. 2. It is apparent 
that in this case, 11 + L(jo)l > 1 for frequencies less than ol. This, in turn, means 
that 1 S,T(jw) 1 < 1 for W < WI. Therefore, a well-designed system, in terms of low 
sensitivity, will have a bandwidth less than wl. 

If a plot of the closed-loop frequency response is available, Sz(j~) may be 
read directly off the diagram, as shown in Fig. 3. 

For computational purposes, if we denote the perturbed values of the open- 
and closed-loop transfer functions by G*(s) and T*(s), then with 

AG (6) = G*(s) - G (6) 
(10) 

AT (s) = T*(s) - T (6) 

we have 

T G AT 
SG-F-~ (11) 
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Re 

Figure 2. Nyquist Plot of Open-Loop Transfer Function 
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Im 
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I 

f 

Figure 3. Nyquist Plot of Closed-Loop Transfer Function 
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so that 

1 (12) 

Conseque+tly, if the nominal and perturbed transfer functions are specified, 
the sensitivity, SC, may be used directly to calculate the new transfer function, T(s). 

The ideas discussed above constitute the classical notions of sensitivity, 
which, because of historical precedence, were necessarily expressed in terms of fre- 
quency response. Modern control theory, which deals with such concepts as root locus, 
state variables, etc., would therefore seem to require an expanded approach to the 
definitions and use of sensitivity. This is considered in the following sections. 

3.1.2 Closed-Loop Poles 

Referring to the unity feedback system shown in Fig. 4, we assume that the 
open-loop transfer function is expressed in terms of its poles and zeros as 

n 

c (6) 
K !I (S + Zj) 

G 64 = E = 
j=l = KQW 
m+n - 6(s) 

II ts + Pi) 
i=l 

(13) 

A deviation in G(s) may be due to a variation in: open-loop gain, K; the zero, 
zj ; the pole, pi; or any combination of these. 

Figure 4. Unity Feedback System 
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Obviously a change in G(s) manifests itself in a shift of the closed-loop 
of the system; i. e., a shift in the poles of 

c (6) 
K ; (6 + zj) 

T(s) = - = G (6) Ka(s) = j=l 
R 09 1 + G (6) = B 03 + Ka (6) m+n 

Jl ts + qi) 

assuming m 5 1. 

poles 

(14) 

Conventional root-locus techniques may be used to determine how the closed- 
loop poles are affected by changes in loop gain only. For present purposes, we seek 
to determine the sensitivity of the closed-loop poles to variations in K, z., and pi. 
This particular sensitivity may be defined in various ways. Ur(3) takes J 

i a(+ 
sx = x- 

ax 

where x may be the open-loop gain, a pole, or a zero. On the other hand, Huang(4) 
uses 

aqi 
+“- 

qi ax 

which is closest in form to the classical definition of Eq. (1) or (2). 

In the ensuing discussion, we will adopt the type defined by 
Stapleford( viz. , 

i 
sK 

aqi 

= Kz- 

a4i 
s;. = - 

1 azj 

si =? 
Pi ap. J 

McRuer and 

(15) 

(16) 

(17) 

Definitions (15) - (17) are particularly convenient, since (ae will be shown 
subsequently) they satisfy a number of very useful relationships with the open-loop 
poles and zeros and with the residuee of the closed-loop’transfer function. These 
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enable the sensitivity properties of the system to be expressed in a very simple and 
enlightening form. 

We now write the open-loop transfer function as 

G= G (6, K Zj, Pi) 

to emphasize that it is a function of not only s and K, but also the pole and zero 
locations. Forming the total differential, we have 

= gds + 
n aG 

m+n 
dG +EdK +.xKdzj + c 

j=l j j=l 
$ dp. 

j ’ 

(18) 

(1% 

Since -qi is a root of 

1 + G (s) = 0 (20) 

the total differential of Eq. (19) must be zero for s = -qi. 
in Eq. (19), we obtain, after rearranging ternis. 

Setting d G = 0 and s = -qi 

dqi = 

aG ( 1 -SE 
aG 

( ) bs 1 

(21) 

Since qi is itself a function of K, zj, 
be written; viz. , 

and pj an alternate expression for dqi may 

‘i = qi (K, zj> pj) (22) 

Taking the total differential, 

aq. n as. m+n aqi 
dqi ,= K$$ + C$ dzj + C 

j=l j j=l 
ap dp. 

j J 

By virtue of Eqs. (15) - (l’i’), this may be written as 

n m+n 
dqi = 

i dK 
‘KY + c S; dzj + c Si dpj 

j=l j j=l pj 

(231 

(24) 
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After equating like coefficients in Eqs. (21) and (24), we find 

. aqi 
s; = KaK 

s=-qi 

aqi s;. = - = 
3 azj 

Si 
m. 1 C-Z 

pj aPj 

aG ( 1 azj 
-SE- 
( ) a6 I 

s=-qi 

aG ( ) aPj 

‘aG 
( 1 a6 I s=- 

?i 

(25) 

(26) 

(27) 

Note that the gain sensitivity is based on a fractional change in K, while the 
pole and zero sensitivities are based on absolute shifts in pj and Zj. This apparent 
lack of harmony in the definitions is of little concern, since these definitions lead to 
simple and instructive relations for the respective sensitivities. 

Recalling that G (-qi) = -1, while 

X G -=- 
aK K 

aG G 
az= 

j (’ + ‘j) 

aG G 
5 = -(s+pj) 

from Eq. (13), the sensitivity relations, (25) - (27), reduce to 

(28) 
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s; = 
Sk 

j (z j - qi) 

i 
spj = 

s; 
(qi - Pj’ 

If we now let Qi denote the residue of T(s) at the pole, -qi, then 

i 
sK = Qi 

This relation is readily proved as follows. From Eq. (14), 

G (s) 
m+n 

c 
Qi 

T(s) = 1 + G (s) = i=l ts + qi) 

assuming that all the poles of T (s) are simple. 

Let 

@ + q.)G (6) 1 
Qi (6) = 1 + G(s) 

Then by definition 

pi (-qi) = Qi 

Writing Eq. (34) in the form 

Cl + G (s)I@~(s) = (s + qiP (6) 

14 

(29) 

(30) 

(31) 

(32) 



ana differentiating both sides with respect to s, 

(l+G)@;+ QiG’ = G + (a +qi)G’ 

where 

( )’ I 

Solving for ‘i, 

y (6) = 
G (6) + (6 + qi) G’ (6) - cl + G (s)$%) 

G’(s) 

But since G (-qi) = -1, we obtain 

@i (-9i) = 
1 

-G’(s) 1 = Qi = S; 
s=-q. 1 

Q. E. D. 

Another important relation satisfied by the pole and zero sensitivities is 

&;.+mcs; = 1 (36) 
j=l 3 j=l j 

This is, in fact, a direct consequence of Eqs. (28) - (30) and the form of 
G (s). We note that 

Els~-qIKIBa’~ @‘I = [G($- $,3._; - ($ - $),=_, 
i s=-qi i i 

(37) 

But 

n 

c 
1 (y’=oL - 

j=l 6 + z. 
3 
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Therefore 

s&2- = 
1 

aG 
( ) 

n m+n 
as 

s=-qi c 
1 

c 
1 -+ 

j=l ‘j - qi j=l qi - Pj 

W3) 

or, equivalently, 

i i 
n 

SK+ 
m+n S 

c 
K - = 1 

j=l 'j 
- qi c j=l qi - Pj 

Using Eqs. (29) and (30) leads to (36). 

The gain sensitivity, SK (w hich is, in general, a complex number), has a 
simple physical interpretation in the s plane. It is a vector, tangent to the root locus 
at 6 = -qi, and oriented in a sense opposite to increasing K. This follows from the 
fact that a root locus is a plot of the roots of 

1 + G(s) = 0 

The total derivative is 

dG = gds +gdK 

But along the locus, dG = 0. Therefore 

ds = -- dK dK i 
-=-Ye K 

s=-q. 1 

(39) 

Since dK ’ K is a real number, the direction of d s along the locus for positive 
dK . 
K is given by -SG . 

The classical and gain sensitivities are related in a very simple way. From 
Eq. (4), with H (s) = 1, 

T 
SC 

1 G z-=1-- 
1 +G l+G 
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By virtue of Eqs. (31) and (32), this becomes 

i 
T m+n 

SG = 1 - c i=l @ + gi) 
(40) 

Thus the classical sensitivity is interpreted as a weighted sum of the gain sensitivities. 

The basic problem of this section is the determination of the shift of the closed- 
loop poles for prescribed (small) variations in gain and open-loop poles and zeros. In 
view of the foregoing discussions, the main relation is given by 

n dzj 
c (z. - qi) + 
j=l 3 

(41) 

which is obtained by combining Eqs. (24), (29), and (30). 

In a given situation, the nominal values of K, qr., z., and pj are known. When 
the variation of G(s) is expressed in terms of dK, dz., and ‘dp., one may determine 
dqi if the gain sensitivity, SK, is known. Various m&hods of ‘calculating this quantity 
are considered next. 

3.1.2.1 Calculation of Gain Sensitivity 

The most accurate calculation of the gain sensitivity is by the Direct Method; 
viz., 

s; = - B (6) 
,6’(s) + Ka’(s) 1 s=-q. 1 

This relation follows directly from Eqs. (13) and (28): making use of the fact 
that G(-qi) = -1. For high-order systems, the evaluation of G via Eq. (42) becomes 
quite laborious. One may then use a graphical approach (slightly less accurate), the 
simplest of which is the so-called Gain Perturbation Method. Here we make use of the 
incremental approximation to Eq. (15); i. e. , 

i Aqi 
SK=KE (43) 

To employ this relation, it is necessary to have available the location of two 
closed-loop poles for two slightly different values of open-loop gain. The situation is 
depicted in Fig. 6. Having K and AK, we measure the magnitude of A% directly off 
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Portion of Ftoot Locus 

Gain = K + AK 

Gain = K 
6 = -q. 1 

Figure 5. Calculation of Gain Sensitivity by Gain Perturbation Method 

the figure. 
with Sk 

Obviously, since K and AK are real numbers, the phase angle associated 
is the same as the phase angle of Aqi (also measured off the figure). 

One may devise a more accurate graphical method that is a direct consequence 
of the fact that the residue of a function of a complex variable at a given singularity can 
be expressed in terms of vectors to the poles and zeros of the function in the s plane. 
Since the gain sensitivity at -qi is indeed the residue of T(s) at the pole -qi, we have, 
by virtue of Eqs. (31) and (33), 

Using Eq. (14), this becomes 

K n” (Z. - qi) 
s$ = j=l J 

m+n 
II @j - qi) 

j=l 
jfi 

18 
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We may call the approach using Eq. (44) the Vector Method. To use this, it 
is necessary to have a complete set of closed-loop poles. The gain sensitivity is then 
expressed in terms of a product of vectors from the open-loop zeros divided by the 
product of vectors from the closed-loop poles. The accuracy is limited only by the 
accuracy of the graphical plot. 

At this point, it is instructive to consider the application of the above ideas in 
a specific case. 

Example 1: The schematic of the system is shown in Fig. 4. We take 

K (6 + 5) 
G @) = (6 + l)(s + 2.75) 

KCY(S) =- 
B(s) 

(45) 

The corresponding root locus is depicted in Fig. 6, which also shows the 
closed-loop poles corresponding to K = 7.25. It is required to determine the shift in 
these closed-loop poles due to prescribed variations in gain and open-loop poles and 
zero. 

Applying Eq. (41) to this case, we have 

dzl APl Ap2 
tz 1 - q1) + &I1 - P,) + (ql - P,) 1 (46) 

By direct measurement of the vector quantities involved (see Fig. 7), 

z1 - q1 = 3.00 /loo” 

q1 - Pl = 5.38 /-33’ 

q1 - p2 = 4.03 /-47” 

- q1 = -5.5 + j2.96 

It remains to determine $. This will be calculated by each of the three 
methods described in the previous section. 

Using the Direct Method, we have, from Eqs. (42) and (45), 



Figure 6. Root Locus for Example 1 

2. 5 

2.0 

1.5 

1.0 

-Re 

-0.5 

-1.0 

-1.5 

-2.0 

-2.5 

-3.0 



Im 

I I 
-7 -6 

/ 

K = 7.25 

-9, 

h 

--1.0 

--1.5 

- -2.0 

“-2.5 

- -3.0 

Figure 7. Vector Quantities for Determination of Sensitivity 



By the Gain Perturbation Method via Eq. (43), 

1 KAql 7.25 x 6.5 
SK=.== /13” = 3.62 1 /130 

Finally, using the Vector Method and Eq. (44) 

1 K tzl - 
sK 

cl+ 7.25 x 3.0 
= = /loo” = 

@I2 - ql) 5.92 /900 
3.67 /lo” 

As expected, when the root locus is drawn accurately, the Vector Method 
yields a value virtually identical to that obtained by the Direct Method. 

Assume now that 

AK = 1 

Ap2 = -0.5 

Then, from Eq. (46), 

dql = 3.68/100 & 
. 

0.75 0.25 
+ 3.0/100’ + 5.38/-33’ 

0.5 
- 4.03 l-47” 1 

= (3.68/10”)(0.3154/-81”) 

= 1.16/-7X= 

The new closed-loop pole, -q;, 
is then obtained by vector addition as 
shown in Fig. 8. 

As a check on the method, we 
calculate the closed-loop poles for 

8.25(s + 5.75) 
G@) =(s+1.25)(s+2.25) 

Ap1 = 0.25 

AZ1 = 0.75 

-4: 

2.96 

-Re 

Figure 8. Shift of Closed-Loop Pole in 
Example 1 
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We find 

-q; .= -5.875 + j3.968 

Jn view of the fact that the parameter deviations were not at all infinitesimal, 
the agreement is excellent. 

Remark: One of the main virtues of the method herein described is that useful 
qualitative sensitivity features may be obtained with little effort. An exam- 
ination of Eq. (41) indicates that the sensitivity of a closed-loop pole to varia- 
tions in a particular open-loop pole or zero diminishes with increasing 
distance between the two. Thus variations in open-loop poles or zeros far 
removed from the closed-loop pole in question have a minor influence on the’ 
latter. This is perhaps intuitively evident, but Eq. (41) expresses this 
condition in precise fashion. 

3.1.3 Efgenvalues and Eigenvectors 

We consider a linear stationary system expressed in the state variable format(“) 
as follows. 

i =Ax+w (47) 

x(0) = c (48) 

where x is an n-dimensional state vector (n x 1 matrix), A is a constant n x n matrix 
whose typical element will be denoted by aij, and w is a vector forcing function. 

It is known that the solution for the system, (47) and (48), is given by (17) 

t 
At X =e c+ 

/ 
eA (t-0) w(o) do (49) 

0 

where eAt is the transition matrix, which may be computed in several ways. The 
usual representation is@‘) 

At e =M 

&t 0 

0 I M 
-1 

t 
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Here the Xi denote the eigenvalues t of the matrix A, and M is the modal 
matrix for A. 

Thus the distinctive feature of the state-variable representation is that the 
response is governed by the eigenvalues of the system matrix, A. 
representation * for the transition matrix, 

Using an alternate 

eAt = c n e*it u v * 
i i 

i=l 
(51) 

where 

u. s 
1 

eigenvector (n x 1 matrix) corresponding to the eigenvalue, Xi (Ui is the 
ith column of the modal matrix M) 

v. I 
1 

row vector (1 x n matrix) whose -elements are the ith row of M-l 

the response is expressed as a weighted sum of the system eigenvectors (modes), 
which clearly indicates the relative contribution of each mode to the total response. 

Now the deviation of any system parameter from its nominal value is reflected 
in a change in one or more of the elements of the system matrix, A. We investigate 
the problem of determining the change in the eigenvalue, Xj (or eigenvector, 9) due to 
a change in an element aka of the matrix, A. One measure of sensitivity is the ratio 
of the (small) increment in ~j to the (small) increment in akR . We therefore define the 
eigenvalue sensitivity 

axj 
z- 

aaka 
(52) 

. 
The problem is now one of finding a suitable expression’for & in terms of 

given system parameters. Following Laughton, (11) we let 

A* = the matrix obtained by replacing the (k.Qth element in A by aka + Aaka 

Fka= the cofactor of the (k@h element of (A - XI) 

t Throughout the ensuing discussions, these eigenvalues are assumed to be distinct. 

$ See Appendix A. 
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Then, expanding the determinant of (A* - XI) by the elements and cofactors of 
the kth row, we find 

det[A*-XI] = aklFkl@) f ak2Fk2(X) + .................... 

= det [A - XI] + hakAFka @) 

Thus the eigenvalues of A* are given by the roots of 

det [A - AI] + Aaka FkR (x) = 0 

We may therefore write Eq. (53) in the form 

where Xrdenotes the ith eigenvalue (assumed distinct) of A*. 

Replacing X by Xj, Eq. (55) reduces to 

AX. 
1 Fka ‘j) -= 

Aaka n” A* 
i=l ’ 

- xj) 

i#j 

where 

AXj = Xf - Aj 

Therefore, in the limit 

aA. 
,j =I= FkR ‘j) 

ka aaka F(l) @ 
j 
) 

F(l)@) = d 
j dX 1 det CA - Ml) 

h=A. 
3 
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(54) 

(55) 

(56) 

(57) 

(53) 
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Eq. (58) is an explicit relation for the eigenvalue sensitivity, 4,. It is possi- 
ble to obtain a simpler and more elegant expression as follows. For this purpose, we 
adopt the notation 

. 
S’ E the matrix whose (ka)th element is - aAj 

ask, 

L&) = adj [b - XI] 

Then the matrix equivalent of Eq. (58) is 

$ = 
LT Aj) 

F(l) (6’3) 

, &j) 

We have also? 

= uv 
L(xj) j j (61) 

F(l) 

(xj) = "s"j (62) 

where’ uj and vj are the eigenvector and the row vector previously defined. Using this 
and Eq. (A5) of Appendix A, we find that the eigenvalue sensitivity matrix pf Eq. (60) 
may be expressed as 

,j = vT UT 
j j (63) 

This is the basic result of the analysis. Eq. (63) shows that a knowledge of 
the eigenvalues and modal matrix for A yields all the information concerning the sys- 
tem sensitivity, in addition to that necessary for determining the system response. 

In most practical situations, one system parameter usually appears in several 
elements of the matrix, A. The variation of the jth eigenvalue is then given by 

AAj = c Sia Aaka 
k, R 

where the summation is taken over all perturbed values, aka’ 

(64) 

t. These relations are derived in Chap. III of Ref. 18. 
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Proceeding in a completely analogous manner, we find, for the eigenvector 
sensitivity, 

where hlii is the (kl)th element of the matrix 

vTuT 

H1 = 
i j 

(xj - ‘i) 

(65) 

(66) 

As pointed out by Laughton( the above ideas may be profitably applied to 
the evaluation of analog computer simulations when time and amplitude scaling is 
involved. This is important because sensitivity features, as determined by system 
parameter changes on the computer simulation, often serve as basic guidelines for 
design. It will be shown that amplitude-scaling materially alters the eigenvalue sen- 
sitivity matrix, while time-sc&ing has no effect on this sensitivity. 

To show this, we define a new independent variable by 

t = 87, B = positive constant 

Then the free motion of Eq. (47) takes the form 

dx - = BAx 
dr 

whose solution is 

n x.7 
x= c 

n eXiT 

i=l 
UiViC = c e ’ [SilTc 

i=l 

using (A14) and Eq. (63). 

The eigenvector sensitivity matrix is thus unaffected by a change in time scale. 

Consider now a change in amplitude scale. This may be simply represented 
by the coordinate transformation 

x = Ty 
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where T is a diagonal matrix. Thus, instead of 

j, = Ax 

we have 

j, = By 

where 

B = T-lAT (67) 

Two matrices, A and B, related by a transformation of type (67), are said to 
be connected by a collineatory transformation( 18) . It is easy to show that in this case, 
A and B have the same eigenvalues. We have 

T-lAT - XI = T-‘(A - XI)T 

and therefore 

det [T-l AT - XI] = (det T-l) l (det [A - x1-J) l (det T) = det [A - XI] 

Q.E.D. 

But A may be written as 

n 
A = c Xi lIsilT 

i=l 
(68) 

by virtue of (A9) and (63). 

Consequently, using (67) and the fact that A and B have the same eigenvalues, 
we find 

B = 2 Xi[S;]T (69) 
i=l 

where 

S; = T-l [ SijTT 
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It follows, therefore, that the sensitivity properties of the transformed sys- 
tem (amplitude-scaled computer simulation) may differ markedly from the actual system 
sensitivity. 

Example 2: We consider the system described by 

i = Ax 

where 

[ 

-2 -1 

A= 1 0 

-1 0 

The eigenvalues are 

Xl = 1.0 

A, = -1 + j 

A, = :l - j 

The modal matrix is 

and its inverse 

-1 1 
M =- 

10 

5 

-(3 + 4j) 

(2 + j) 

-2 

(1 + j) 

(1 - j) 

1 

1 

1 1 

5 

-(3 - 4j) 

(2 - j) I 

1 
2 8 

ii -j 

-j j 



Therefore 

0 

u1 = [I 1 

1 

[ 
5 

u3 = -(3 - 4j) (2 - j) 1 

5 

u2 = [ 1 -(3 + 4j) 

(2 + j) 
and 

1 
v1 =5 [ 

-1 1 4 1 
v2 = $ (1 + j) j 

ll -j 1 
v3 =&[(l-j) -j j 

J 

Assume now that element a23 in matrix A changes from 1 to 0.2. We are 
interested in determining the shift in the complex eigenvalue, X 2 . 

From Eq. (64), 

AA2 = St3 Aa 

Now 

Aa23 = -0.8 

while, by Eq. (63), 



which means that 

2 (1 - 2j) 
‘23 = - 10 

Consequently, 

Ax2 = - (’ io2j)(-0.8) = 0.08 - O.lSj 

Thus, using (57), we find that the new value of X2 is 

Ai = (-l+j) + (0.08- O.lSj) = -0.92 + 0.84j 

It is instructive to compare this with the exact value of X2 obtained by 
calculating the eigenvalues of the perturbed matrix 

After a simple calculation, we find 

A; = 0.815 

AZ = -0.9075 + O.Slj 

* 
A, = -0.9075 - O.Slj 

which indicates very good agreement. 

Remark: The particularly attractive feature of the sensitivity measures developed in 
this section is that these eigenvalue sensitivity matrices are available almost 
by inspection after the basic response data (modal matrix, transition matrix, 
etc. ) has been calculated for the given system. It is therefore possible to 
determine quickly, and with little effort, the shifts in the eigenvalues for 
prescribed variations in system parameters. The elements of the eigen- 
value sensitivity matrices provide quick qualitative measures of how the 
eigenvalues are affected by specific parameter variations. 
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3.1.4 Sampled-Data Systems 

The sensitivity measures considered thus far carry over with simple and 
obvious modifications to sampled-data systems. 

Employing Z transforms, Eq. (4) becomes 

s;(z) = 1 
1 + L(z) (71) 

which may be called the classical sensitivity for sampled-data systems. It may be 
evaluated in the manner shown in Figs. 2 and 3, except that in the present case, we 
plot L(Z) witht z = ejw7, and w runs from zero to n instead of from zero to infinity. 
In other words, the usual frequency-response methods for sampled-data systems apply. 

Furthermore, the discussion of Sec. 3.1.2 applies directly, except that we 
deal with the z plane instead of s plane poles and zeros. 

It is also easy to show that the eigenvalue sensitivities discussed in Sec. 3.1.3 
have a direct equivalent for discrete systems. 

Consider, for example, the discrete system represented in state-variable 
form by 

xk+l = Axk 

xO = c 5 initial value vector (73) 

xk is an n-dimensional state vector, and subscript k indicates that this is the 
value at time t = tk. For simplicity, the sampling interval has been normalized to 
unity. A is a constant n x n matrix. 

It is known that the solution to the system, (72) and (73), is given by(17) 

xk = Akc (74) 

To put this in a more convenient form, we note that 

A = M-lAM (75) 

where M is the modal matrix for A and 

t r = sampling period. 
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I 

Al 0- 

x2 
A= 1 l . 0. 

l . 
0. 

-. 

0 “A, 

The quantities, Xi, denote the (distinct) eigenvalues of A. As in Sec. 3.1.3, 
we write 

M = up2 . . . . . . . . .un 1 

M 
-1 

Then, after noting that 

Ak = MAkM-’ 

we may write Eq. (74) as 

Xk = C u1 u2 
. . . . . . . . %] k 

x1 

0 

0 
k 

x2 .* 
-. -. *. 

‘xXk 
n 

which reduces to 

i=l 

Defining the eigenvalue sensitivity as 

S’ 
ax. 

I 
ka = - aaka 

. m 

v1 

v2 
. . . 

‘*n - . 

(76) 

C 

(77) 

(78) 
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where aka is the (kEa) th element of A, an argument completely analogous to that of 
Sec. 3.1.3 leads to 

& = vTuT 
j j 

which is completely equivalent to (63). 

3.1.5 Multivariable Svstems 

w-4 

A multivariable feedback control system may be viewed as a generalization of 
the schematic of Fig. 1 in which R(s) and C(s) are vectors, and therefore the quantities 
G(s) and H(s) are matrices of transfer functions (or simply matrix transfer functions). 
In this case, it is not immediately clear how to formulate a matrix equivalent of the 
sensitivity function defined by Eq. (4). It is apparent, however, that such a matrix 
sensitivity function should have two primary characteristics: (a) it should provide a 
quantitative measure of the sensitivity of the closed-loop system to parameter varia- 
tions as compared with the sensitivity of the open-loop system to these same variations; 
and (b) it should reduce to the scalar equation (4) for the single-input/single-output case. 
It has been shown by Cruz and Perkins that both requirements are exhibited by the 
matrix relating the output errors due to parameter variations in a feedback system to 
the output errors due to parameter variations in a corresponding open-loop system. 
This point of view will be developed in what follows. For this purpose, we consider 
the open- and closed-loop multivariable systems shown in Figs. 9 and 10. Here 

GJs) G(s) 

Figure 9. Multivariable Open- Loop Control Sy stem 

- H(s) 

Figure 10. Multivariable Feedback Control System 
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R (6) = p-dimensional input vector 

U (8) = ‘m-dimensional vector 

C (6) = n-dimensional output vector 

G,(s) E m x p matrix 

G1(s) = m x p matrix 

G (6) q n x m (plant) matrix 

H (s) E p x n matrix 

Subscripts o and c on vectors U(s) and C(s) refer to the vectors in the open- 
and closed-loop systems respectively. We define also 

AG (s) = G*(s) - G (s) 030) 

where G*(s) represents the plant matrix when the parameters differ from nominal. 

Referring to Figs. 9 and 10, we find 

C,(s) = G (6) U,(s) (81) 

U,(s) = G,(s) R 6) (82) 

Cc (6) = G (6) UC 6) (33) 

U,(s) = GlW II R (6) - H WC,(s) 1 (84) 
If the plant parameters differ from nominal, then we distinguish the vector 

signals for this case by the starred quantities 

c; w = G*(s) U,(s) (35) 

C;(S) = G*(s)@ (6) (86) 

U; (s) = G1(s) R (6) - H (s) C; (s) 1 (97) 

Note that U,(s) remains the same. 
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Now define the Laplace transform of the vector output errors as follows 

E,(s) = C,(s) - co* (6) (88) 

E,(s) = C,(s) - c,* (6) (89) 

It will now be shown that the matrix relating E,(s) to E,(s) has all the proper- 
ties of a sensitivity matrix. In this context, it is assumed that G,(s), Gl(s), and H (6) 
are such that Cc (6) = C,(s) when there are no plant variations. 

From (83) and (84), we obtain (dropping the argument s for simplicity) 

cC 
= (I + GGlH)-‘GGIR (90) 

Similarly, from (86) and (87), 

cc* = (I + G*G, H)-lG*GIR (91) 

Substituting (80), (go), and (91) into Eq. (89), we obtain, after some reduction, 

EC = (I + G*G,H)-‘[AGGl(HT - I) R ] (93) 

where 

T= (I + G&lH)-lGG1 

Now Eq. (90) can be written as 

CC 
= TR 

Combining this with (84), 

uC 
= Gl(I - HT)R 

But since Cc = Co by assumption, we have 

uO 
= UC = G1 (I - HT)R 

(93) 

(94) 

(95) 

(96) 
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Also, 

EO 
= (G - G*)U, = -AGU, = AGGl(HT - I)R (97) 

Substituting this in (92), the latter becomes 

EC = (I + G*G,H)-1 E. (98) 

We define 

S = (I + G*GIH)-1 (99) 

as the sensitivity matrix for the multivariable system. 

Note that for a single input-single output system with small plant variations 
such that G* is approximately equal to G, S is equal to the classical sensitivity as 
defined by Eq. (4). It will also be observed that while matrices G, Gl, G,, and H are 
in general not square, matrix S is always square. 

In certain special cases, S may be expressed in several interesting ways. 
For example, if the overall closed-loop transfer matrix is denoted by T, with a nominal 
plant G, and by’Tz with plant G*, with analogous meanings for To and T$ then 

EC 
= Cc - C; = (Tc - T;)R 

EO = co-C;: = (To-T;)R 

If PO - T$ is a square nonsingular matrix, we can eliminate R from the 
above relations, obtaining 

EC = cr, - T;)Fo - Tz)-‘E, 

Comparing with (98), we see that 

S = PC - T;)(To - T;)-’ 

Now 

ww 

TO 
= GG, (101) 
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and 

VO - T;) = (G - G*) G, (102) 

By virtue of the assumption that the open- and closed-loop systems of Figs. 9 
and 10 are equivalent for nominal parameters, we have T, = To. If it is further 
assumed that matrices G, To, 
from Eqs. (101) and (102), 

Gc, and (G - G*) are square and nonsingular, then, 

fl0 
- To+)-’ = Gil (G - G*)-’ = T;‘G (G _ G*)-’ = T,lG (G - G*)-1 

Substituting this in Eq. (100) yields 

S = AT, T;‘G AG-’ (103) 

where 

ATc = T* - T 
C C (104) 

Note the striking similarity in form between the sensitivity matrix, (103), and 
the scalar equivalent, (11). It is apparent that the analysis could have proceeded with 
S defined by (103) and subsequently interpreted as the matrix relating EC to E,. 

We now seek to provide a criterion that compares the sensitivity of the closed- 
loop system to that of the open-loop system for prescribed variations in the plant 
parameters. Following Cruz and Perkins(l3), we take, as an index of performance, 

(105) 

e 0) = &E(s)] 

where E(s) is either E,(s) or E,(s). In practical situations, tl may be taken as four 
or five times the largest time constant of the system. Now for the feedback system to 
be superior to the corresponding open-loop system, the inequality 

tf 

/ 

tf 
e:(t) e,(t) dt < 

I- 
e: 6) e,(t) dt 

0 0 
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must be satisfied. It may be shown (13) that this condition is ensured if 

[SkW;lT[SW4] < 1 (107) 

For the scalar case, it was shown in Sec. 3.1.1 that IS(jo)( < 1 was suffi- 
cient to ensure that the feedback system has better sensitivity properties than the 
open-loop system. The matrix equivalent of this is exhibited in (107). For a,well- 
designed system, it is therefore necessary to satisfsl (107) over the frequency band of 
interest. 

3.2 DESIGN FOR SENSITIVITY 

The methods of Sec. 3.1 permit the performance quality of a given system to 
be evaluated in terms of its sensitivity to parameter variations. This is the analysis 
problem. It is generally taken as an afterthought, if considered at all. In one sense, 
this omission is not often serious, since a feedback system has “built-in” sensitivity 
features that are adequate in most designs. However, one may take the point of view 
that a prescribed sensitivity is a fundamental design parameter and may determine 
appropriate compensation networks accordingly. Techniques for accomplishing this 
are not nearly as well-developed as for conventional compensation (to ensure relative 
stability, time or frequency response, etc.). One method, useful in certain cases, is 
described in Sec. 3.2.1. 

Another aspect of the sensitivity problem, first pointed out by Horowitz(lg), 
is that in certain instances, one mistakenly treats what is basically a sensitivity prob- 
lem as one of adaptive control! He introduces the concept of “sensitivity in the large,” 
and shows that in many cases, a suitably compensated “high gain” system exhibits the 
features generally thought to be obtainable only by adaptive methods. This approach 
will be discussed in Sec. 3.2.2. 

3.2.1 Comoensation Networks 

One design method for feedback system compensation is based on the assump- 
tion that the system-response specifications can be expressed in terms of desired loca- 
tions of dominant closed-loop roots (17). Lead or lag networks are usually employed 
to ensure that: the dominant roots are at desired locations; and the steady-state error 
for prescribed inputs (ramp, step) is less than a given value. 

If only the first of the above conditions is to be satisfied, there will be an 
infinity of solutions. With both conditions, the solution is unique (when the form of the 
compensation network is prescribed). 

For the problem to be treated here, the first of the above conditions ie 
retained, but the second is replaced by a specification concerning the root sensitivity. 
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This new condition may take different forms (depending on the particular problem), 
such as sensitivity of the relative damping factor or natural frequency. The method 
is due to Rung and Thaler(8) and is developed in the following. 

3.2.1.1 The U Circle 

We consider the sensitivity of the closed-loop poles in the manner discussed 
in Sec. 3.1.2. The pertinent definitions, (29) and (30), are repeated here for 
convenience. 

Sk. = SK’ 
I @ J - 4i) 

si = 4 
pj (qi - Pj) 

These satisfy relation (36), which may be written as 

n 
1 m+n 

c c 
1 1 + =- 

j=l ('j - qi) *= J 1 (q i -Pj) $ 

(108) 

(109) 

(110) 

The above three relations suggest a simple graphical procedure for deter- 
mining the root sensitivities. From the closed-loop pole, -q., a vector can be drawn 
towards each open-loop pole and away from each open-loop z&o. The magnitude of 
each vector must be equal to the inverse of the distance from -qi to the pole or zero 
involved. (See Fig. 11.) By adding all these vectors (see diagram b of Fig, ll), we 
obtain a vector sum, U, which by virtue of (110) is precisely the vector l/E&. It is 
easy to see, therefore, that the sensitivity of -qi to each pole or zero is equal to the 
vector just drawn to the particular pole (or away from the particular zero) divided by 
the vector U. A given configuration of open-loop poles and zeros thus implies a unique 
vector U associated with the system. 

Consider now a compensation procedure whereby a pole and zero are added to 
the negative real axis. If the prime purpose is to obtain a prescribed form of response 
characteristics, the location of the compensating pole and zero is, in general, not 
unique. However, if we add the stipulation that the closed-loop root sensitivity is to be 
(in some sense) minimized, then a unique solution is obtained. One type of sensitivity 
is expressed by the requirement that the U vector be maximized. Prior to investigating 
this question in detail, we derive a fundamental property of the U vector locus when a 
compensating pole and zero are added. 

40 



(a) 

W 

NOTE: Scale in diagram (b) is 
2-l/2 times that in 
diagram (a). 

Figure 11. Determination of U Vector 
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Suppose that -q = -c f j d represents the desired location of the dominant 
closed-loop roots. Suppose further than this requires a phase shift of cp degrees, 
which is to be contributed by the compensating pole and zero placed along the negative 
real axis in the s plane. If cp > 0, a lead network is required, while if 50 c 0, a lxg 
network is required. In this way, the desired root location will lie on the revised root 
loi!us . 

Fig. 12 shows the pole-zero configuration for an uncompensated system, 
together with a nominal closed-loop pole (solid square) and the desired dominant p jle 
(point Q). Let Q denote the phase lead that must be contributed by the compen6atJ’q 
pole and zero. Vector &I represents the uncompensated U vector; that is, before ?he 
compensating pole and zero are added. Then 

“As the location of the compensating pole and zero is varied, subject to the 
restriction that Q degrees of phase shift be contributed at point Q, the locus of the U 
vector is a circle with center at I and radius R = (l/d) sin Q. This circle will be called 
the U circle. ” 

To prove this we focus attention on the sensitivity vectors for the compensating 
pole and zero. In Fig. 13, these are denoted by Q M and V Q respectively. It will be 
shown first that V and M move a circle with radius r = 1 2d ’ 

Applying the law of 
cosines, we have 

Re 

Figure 12. Determination of U Circle 
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Figure 13. Obtaining the U Circle from the M Circle 

2 
e = L 

d2 E 
COS2Ql + COS2Q2 - 2 CO6 Q1 CO6 Q2 CO6 Q 1 

Using some elementary trigonometric identities, and the fact that Q = e +Q2, 
we reduce this to 

Sill2 Q e2 =- 
d2 

We have also 

e2 = 2r2 - 2r2cos 256 = - 
Sil12Q 

d2 
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Solving for r, 

1 
r =- 

2d 

which means that we may express e as 

e = 2rsincp f constant 

An elementary geometric theorem then shows that Q, M, and V always lie on 
a fixed circle (for fixed d and Q), which is here referred to as the M circle. 

The sum of the pole and zero sensitivity vectors is Q N. This must be added 
to the uncompensated U vector, Q I, of Fig. 12 to obtain the U vector for the compen- 
sated system. Since the magnitude of Q N is constant, the tip of this final U vector 
describes a circle of radius 

e = 2rsincp = Sin Q 

d 

Q. E. D. 

3.2.1.2 U Circle Limits 

The fact that the compensating pole and zero are restricted to lie on the nega- 
tive real axis in the s plane means that the U vector locus will traverse only a portion 
of the U circle. To determine these limits, consider Fig. 14a, in which the compen- 
sating zero is located at the origin. To obtain the resulting U vector, draw IV parallel 
to QO. Now locate point Jr by constructing &V IJ, = (p/2. From Jr, draw a line that 
passes through the center, 0, of the M circle. Finally, draw I U, perpendicular to 
Jr 0. Point U, on the U circle represents the right-hand limit of the U vector locus. 

The left-hand limit is obtained from Fig. 14b. Here the compensating pole is 
located at minus infinity. Locate point JQ on the M circle by constructing & IS2 JQ = Q . 
Draw the line, In, that intersects the U circle at point UQ. Point UQ represents the 
left-hand limit for the U vector locus. 

Thus, as the compensating pole and zero move from the extreme right position 
(where the compensating zero is at the origin) to the extreme left position (where the 
compensating pole is at minus infinity), the U vector follows that portion of the U circle 
that is shown solid in Fig. 14b. 

These results are easily established by elementary geometry. 
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(a) Right Hand Limit: Compensating Zero at Origin 

Im 

U 

(b) Left Hand Limit: Compensating Pole at Minus Infinity 

Figure 14. U Circle Limits 
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3.2.1.3 Design Techniques 

It will now be shown how the U circle may be used to satisfy stipulated specifi- 
cations on the sensitivity of the desired root location.. The required sensitivity may 
be expressed in one of several ways: 

a. 

b. 

C. 

The sensitivity of the root at Q is to be a minimum with respect to variations in 
the open-loop poles and zeros. This means that the U vector of the system must 
be a maximum. In Fig. 14b, for example, the U vector of maximum magnitude is 
given by Q U,, i. e . , with a compensating pole at infinity. 

The relative damping must be constant when the open-loop gain fluctuates. Since 
the U vector is tangent to the compensated root locus at point Q, this condition 
requires that the U vector (extended if necessary) pass through the origin of the 
6 plane. 

The relative damping factor must be constant when a particular pole, say pB, 
varies. A simple ana,lysis shows that in this case, the U vector must be chosen 
so that the phase of S& is equal to the phase of the desired dominant root, -qi 
(or the phase of -qi ~1~s 180” ). 

Each of the above specifications requires that the compensating pole and zero 
be found after the U vector is selected. This is merely a converse of the procedures 
already discusse.d. Consider, for example, the situation shown in Fig. 15. Suppose 
that Q UC represents the desired U vector, determined in accordance with some pre- 
scribed procedure. If the compensation is to introduce a phase lead of Q degrees at 
Q, then the compensating zero is to the right of the compensating pole. To locate the 
compensating zero, one proceeds as follows. Through n (the center of the M circle) 
draw a line perpendicular to I UC and’ intersecting the M circle at J. Obtain points V 
and M such that 4 MOJ = 4JnV = Q, Then, through Q, draw a line parallel to IV. 
The intersection of this line with the real axis locates the compensating zero. The 
compensating pole is then found by drawing a line through Q and parallel to IM. 

Each of the three sensitivity specifications listed above leads to the pre- 
scribed U vector, from which the locations of the compensating pole and zero are 
determined. The general procedure is perhaps best illustrated in terms of a specific 
example. 

Example 3: Given the open-loop transfer function 

K 
6 (6 + l)(s + 4) 

The system dynamic specifications lead to the requirement that the dominant 
roots be located at -1 f j . Fig. 16 shows the open-loop pole configuration in the s plane, 
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Figure 15. Determination of Compensating Pole and Zero Location 

where Q is the desired location of the closed-loop pole. It is ready found that a com- 
pensating network that contributes Q = 63” of phase lead at Q is necessary. Via a 
direct application of the methods discussed above, we first construct the uncompensated 
U vector, Q I, and then find, for the radii of the M and U circles respectively, 

1 1 
r=2d=T 

e = 2rsincp = 0.89 

The results are shown in Fig. 16 in which the limit points on the U circle have 
also been determined. 

We now seek to obtain a unique location for the compensating pole and zero by 
considering, in turn, three types of sensitivity specification. 
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We first take the case where the sensitivity of the root at Q is to be a mini- 
mum with respect to variations in the open-loop poles. As noted earlier, this simply 
means that the vector from Q to the U circle (i. e., the U vector) must be a maximum. 
An inspection of Fig. 16 indicates immediately that the maximum U vector is given by 
QT&; i.e., at the right limit point of the U circle. Consequently, the compensator for 
this case has a zero at the origin and a pole at -1.30 (the latter determined by the ini- 
tial requirement that 63’ of phase lead be contributed at point Q). 

As an alternate sensitivity specification, we may require that the relative 
damping factor for the dominant root be constant for variations in open-loop gain. 
Since the U vector is tangent to the compensated root locus at Q, this would require 
that the U vector be in the direction of line &o (constant relative damping). However, 
we note from Fig. 16 that the limiting position of&v is given by GUa (i. e., the left 
limit point of the U circle). This is therefore the best that can be obtained. Since this 
location requires a pole at infinity, the compensating zero is located on the negative 
real axis such that Q = 63’ of phase lead is contributed at Q. This corresponds to a 
zero at -1.50. 

Finally, we consider the requirement that the relative damping factor for the 
closed-loop pole be constant with respect to variations of pole -p2. As previously 
noted, this implies that the phase of G2 be equal to the phase of the closed-loop root at 
-qi (denoted in Fig. 16 by point Q). From the definition of the root sensitivity, Eq. (log), 

si = 5i 1 
p2 (qi - P2) = ’ 

( 1 
- 

sIk 
hi - P2) 

In Fig. 17, the vector from point Q to the U circle represents l/d. Vector 
&A represents qi - p2. Furthermore, the magnitude and phase angle of the closed- 
loop pole, -qi, is depicted by the vector OQ. We may therefore write 

si = 
1 

p2 &v x QA 

as’ = 
p2 

- && - $QA = &tiij 

Consequently, the phase angle of m (the U vector) is given by 

$Q U = -%QA - &G = -270’ - 135” = -405’ = -45’ 
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In other words, the U vector must be aligned with OQ. This is the same 
result obtained for constant relative damping factor with respect to open-loop gain vari- 
ations. In the present case, the result if intuitively plausible, since it implies that the 
compensating zero is to be placed as close as possible to pole p2. This has the effect 
of minimizing the influence of p2 on the transient response of the root at Q. 

3.2.2 Sensitivity in the Large 

The discussions thus far have emphasized either im~icitly or explicitly that 
the sensitivity techniques developed arevalid only for small excursions of a particular 
parameter from nominal. This is, in fact, a direct consequence of how sensitivity is 
defined. The basic definition, Eq. (l), is expressed in terms of differential quantities, 
from which it is inferred that an equation such as (4) cannot be used for large param- 
eter excursions. It can be shown quite easily, however, that the restriction to small 
deviations is easily removed. 

In the feedback control system of Fig. 18, suppose that the plant transfer func- 
tion, P (s), varies because of fluctuations in the plant parameters. Let? 

AP = P-PO (111) 

AT = T-T 0 (112) 

where the zero subscripts indicate values for nominal plant parameters and T is the 
closed-loop transfer function 

‘I’= GP 
l+L (113) 

. 
R(s) 

P(s) ’ 
C(s) 

b 
. 

Figure 18. Conventional Feedback Control System 

t For ease of writing, the argument, 8, in the transfer functions will hereafter be 
dropped. 
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L = GHP 

The A quantities are assumed finite and not necessarily small. 

Now define the sensitivity of T to variations in P as 

ST AT P z-s 
P AP T 

By substituting (111) - (113) in (115), we find, after some reduction, 

ST 
1 

P = 1+ Lo 

(114) 

(115) 

W-9 

Here we have not used the relation 

aT G -= 
ap (1 + G H P)2 

which was used to derive Eq. (4). Therefore, Eq. (116) is valid whatever the magnitude 
of AP. 

It was first pointed out by Horowitz( 15)s (lg) that a failure to appreciate the 
far-ranging significance of the sensitivity relation for large parameter variations, 
(116), has led to the formulation of ambiguous and superficial “adaptive” systems that 
are, in fact, less effective than conventional linear types. He quotes several motiva- 
tions in the literature to justify the needs for adaptive methods: 

II 
. . . . it is generally taken for granted that the dynamic characteris- 

tics of the process will change only slightly under any operating con- 
ditions encountered during the lifetime of the control system. Such 
slight changes are foreseen and are usually counteracted by using 
feedback. Should the changes become large, the control equipment 
as originally designed may fail to meet performance specifications (23). 

The use of feedback in the classical sense . . . may be con- 
sidered passive adaptation . . . For more complex system or sys- 
tems whose environment is more severe, simple passive adaptation 
may not be sufficient(22). 

If, however, the parameter variations are extremely large, 
the gain required to maintain the specified system performance may 
become so high as to be unobtainable because of noise or saturation 
limits(24) . 
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For systems with more complicated dynamics, it is usually 
not possible to %wamp out” the fixed elements characteristics and 
still obtain the desired performance . . . . The use of conditional 
feedback, sometimes referred to as the ffmodel approach, If allows 
the designer to minimize these effects . . . . Even the best of linear 
designs break down, however, when the parameters vary over too 
wide a range(25). 

The adaptive approach would aim to maintain a prescribed 
sensitivity or performance criterion in the face of process changes. . 
. . The adaptive viewpoint would be especially suited to the design of 
controllers for processes whose dynamics are not completely known 
in advance (2 ‘j) . 

Conventional control systems are designed to meet certain 
specifications under certain given conditions of the environment and 
the system parameters, but should these conditions change the 
performance will change as a result(27). ” 

The examine these arguments critically, we consider the classical feedback 
configuration in which G(s) 3 1 in Fig. 18. 

The sensitivity is 

ST= l 
P 1 +HPo 

while the desired closed-loop transfer function is 

To = 
pO T 

1 +HP 0 = p6sP 

For this configuration it is impossible to realize Sz independently of To. 
Consequently, one must compromise either the sensitivity or the desired closed-loop 
properties of the system. This fundamental property of the system is directly related 
to the fact that there is only one “degree of freedom” for this configuration; I. e., 
only one free compensating network is available. 

When G(s) & 1 in Fig. 18, then G and H may be chosen so that Sz,and T are 
realized independently of one another. For example, from (116), 

Lo’L1 
ST 

P 

(117) 



Thus H may be selected to satisfy the sensitivity constraint while G may be 
chosen to yield the desired closed-loop requirement from 

GPO 
To = T 

1 + Lo =. GPoSp (118) 

Here there are two “degrees of freedom. It For this case, “it appears that it 
is theoretically possible to design an ordinary type of feedback system to have a chosen 
sensitivity to any amount of plant variation. I1(lg) Many different types of two-degree- 
of-freedom configurations are possible. (15) The essential point is that they are all 
essentially equivalent in having the capability to realize T and Sz independently. With 
this point in mind, it becomes fruitless to search for new and exotic configurations 
(i.e., model feedback, reference model, etc. ) when what is really needed is merely 
an additional degree of freedom. 

As is generally the case, added benefits are obtained at a price. In the situa- 
tion considered above, the desired insensitivity of T to large variations in P is obtained 
at the cost of large open-loop gain, which effectively means compensating networks 
with large bandwidth. The design philosophy of the method will be explained in terms 
of familiar root-locus concepts. 

3.2.2.1 Design in the s Plane 

A typical problem in control system design is usually expressed as the need 
to maintain a few dominant closed-loop roots relatively invariant while system param- 
eters vary over wide ranges. For definiteness, let us consider the plant transfer 
function given by 

K 
D = 
L 

s(s2+ 2Tpwps+4 
(119) 

It is assumed that K may vary by a factor of 4, while sp and wp are such that 
the poles of P may be anywhere in the rectangles A B C D, x E C 6 of Fig. 19. It is 
desired that the dominant closed-loop pole pair be located within a circle of radius 1.2, 
centered at -10 f j lO(R,B in Fig. 19). 

One way of achieving this is to place a complex zero pair (zl, ZI) in the vicin- 
ity of (R, R) and to use a high open-loop gain. There are two fundamental problems: 

a. Where to place the complex zero pair. 

b. Where to place the poles associated with the zeros (since the compensator must 
be physically realizable). 
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Figure 19. Design Philosophy for Invariance of Dominant Closed-Loop Poles 

The use of high open-loop gain means that ultimately the root loci associated 
with the compensator poles are such that a closed loop may be in the vicinity of the 
dominant poles or else in the right-half plane (unstable) if the gain is sufficiently high. 
Consequently, these compensator poles must be “sufficiently far” to the left. The 
further they are to the left (and the higher the gain), the greater the bandwidth of the 
system. Usually, one stipulates that the compensator closed-loop poles should be to 
the left of some arbitrary line, UV V ‘U’, in the s plane. These is some freedom in 
choosing this line, depending on the particular application; however, this choice is an 
integral part of the design procedure, and once made, serves as a primary constraint 
to be satisfied. 

It is required therefore to: 

a. Choose (zl, El) such that the desired T is obtained; and 

b. Choose the compensator pole pair (y, p) such that the desired sensitivity is achieved. 
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A simple analysis shows that a two-degree-of-freedom structure is required. 
’ That is, if the compensator poles and zeros were contained within G or H alone (with 

the other identically one), then z1 and y could not be manipulated to control both 
sensitivity and desired root location independently. 

Furthermore, of the infinity of possible compensator pole locations, we seek 
to select the one that results in minimum bandwidth. The design thus proceeds in two 
stage s : 

a. Locate the compensator zero pair (zl, El). 

b. Locate the compensator pole pair (y, y). 

We consider these in turn. 

3.2.2.2 Comoensator Zero Location 

The location of the compensator zeros is influenced by the variation in open- 
loop gain, K, and by the drift of the open-loop poles of P. Consider first the variation 
in K. Suppose that E is a root of 1 + L = 0 when K takes a particular value. Then 
(see Fig. 20) 

K= 
y (PiEI 

y @jE) 

z1 Figure 20. Variation of Closed-Loop Pole with Variation in K 
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which is merely the usual expression for open-loop gain as the product of pole vectors 
to the closed-loop pole divided by the product of zero vectors to the same closed-loop 
pole. When K is increased to K ‘, the closed-loop pole moves to point E ‘, and we have 

W,E’) 
K’ = n(ZjE’) 

The conditions of the problem are such that the drift in E is very small; there- 
fore piE M pi E ’ and Zj E M Zj E ’ except for the zero, zl, near E. Consequently, 

K’ @1 El 
KNNT (ZlE 1 (120) 

To find the change in the dominant root of 1 + L = 0 due to change in the posi- 
tion of the complex pole of P, let pl, PI and pi, p; respectively denote the old and 
new complex pole positions of L . Also, let E, E ’ denote the old and new positions of 
the dominant root of 1 + L = 0. Then 

K= 
@1E)G~E)i~~ @iE) 

= 
@;E')@;E')i:l @iE') 

(zlE)j+l j ’ (z E) (zlE’)$l (ZjE’) 

@;E’)@iE’)izl @iE) 

x 

(ZlE ‘1 j:l (Zj El 

Therefore 

bp’) @;E’)@;E’) 
pi-- @pNi+) 

This approximation is valid whenever 1 pi E 1 M 1 piE ‘I except possibly for 
i=l, andwhen IzjEIm IzjE’I exceptforj = 1. As noted earlier, the design con- 
strains the drift in E to be small, which means that these conditions are generally 
satisfied. In this case, it is also permissible to assume that pi E ’ fi: pi E and p; E’ M 
pi E. We then have 

(zlE’) @;E)@;E) . 

(z1E) = @1E)61W 
(121) 
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Equations (120) and (121) are used to find the approximate shape and orienta- 
tion of the region of variation of the dominant roots of 1 + L = 0 due to variations in 
gain and the poles of L. This is done as follows. 

In Fig. 21, point 0 corresponds to the location of the compensating zero, and 
X corresponds to the nominal location of the dominant root. These two points may be 
selected at will, since only their relative location determines the scale and orientation 
of Fig. 21. It is asstied in the’following that Kmin represents the nominal value of 
K. As drawn in Fig. 21, E = 1.0 4 0’. 

Figure 21. Region of Variation of Dominant Roots 
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Now suppose that K changes from its nominal value to K’ = 4 Kmfn. The new 
position of the dominant root (denoted by X ‘) is given by Eq. (120); viz., 

K’ ‘lx 6% 
-- p’ K =oxt= 

4 

This serves to locate X ’ in Fig. 21, i.e., E ’ = 0.25 ox. Thus X % is the 
approximate locus of the dominant root as K changes from Kmm to 4 Kmin. 

With the open-loop gain equal to its nominal value, Kmm, we now seek to 
determine the locus of the dominant root as the open-loop pole traverses rectangle 
AD BC of Fig. 19. Consider first the effect of the plant poles moving from A to D. 
We use Eq. (121)t with (see Fig. 19) 

if+ - -4 + j20 

p;E x -10 

fi;E w -10 + j20 

In these relations, E (and E ’ ) is assumed located at R in Fig. 19 (which also 
accounts for the l’approximately equal to” symbol being used). Therefore 

(=I E ‘1 =OM= (-lO)(-10 + j 20) 
(z,E) = (-4)(-4 + j 20) 

and 

G = 2.70&15’ 

since z = 1.0 4 0’ by definition. This locates point M in Fig. 21. With K = 4 Kmin 
and the plant pole still at D, Eq. (120) is used to determine M ‘; viz., 

ziE 5% - = - M 0.25 
ziE’ 6%’ 

t Keeping in mind that E(E’) in Fig. 20 or Eq. (121) corresponds toX(x’) of Fig. 21. 
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In other words m’ is the approximate locus of the dominant root as K varies 
from Kmin to 4 Kmin when the plant pole is at D. 

Continuing in this fashion, we obtain the diagram of Fig. 21. The quadrilateral, 
X M J N, represents the locus of the dominant root when the plant pole traverses rectan- 
gle A DB C in the s plane (Fig. 19) and K = Kmin. The two other quadrilaterals repre- 
sent the dominant root loci for the other values of gain shown. 

The general shape of the region of variation of the dominant root is now avail- 
able and is used to determine the required scale of Fig. 21 and its orientation in the s 
plane. The dominant poles of T (roots of 1 + L = 0) lie inside region X ‘M ‘M J NN ‘X ‘. 
By trial and error, the circle of minimum radius that contains this region is found 
(center R and radius R M in Fig. 21). The specifications dictate that the dominant 
roots of 1 + L = 0 must lie inside a circle of radius 1.2 centered at -10 + j 10. The 
magnitude of RM is therefore 1.2, and R must correspond to point -10 + j 10. It is 
found that OR, which is the distance of ZI from -10 + j 10, is also 1.2. It is clear from 
Fig. 21, that point R is a root of 1 + L = 0 when K = Kmin and when the plant poles are 
at approximately -5 f 10 j. The latter is obtained by noting that in Fig. 21, R lies on 
line X M, which corresponds to line A D in Fig. 19. By measuring on Fig. 21, it is 
found that X R x (0.18) XM. Since (O.l8)(AD) m 1, point -5 + j 10 is thus determined. 

With the above information, the required location of the zeros, zl, El, of 
Fig. 19 can be obtained fairly closely. It is known that the net angle of the vectors from 
the poles and zeros of L to -10 + j 10 must be 180”. Since the far-off poles of L are 
not known as yet, a few degrees may be assigned for their contribution, or, as a first 
approximation, they may be neglected altogether. Therefore (see Fig. 19): 180°=LOR 
+ LpR + ,&R - L zlR - LzlR. Since L ilR sJ 90’) this leads to L zIR w 146’ . It has pre- 
viously been determined that 1 zIR 1 = 1.2. Since R is at -10 + j 10, this locates z1 at 
-9 + j 9.3. With this information, it is possible to turn to the problem of locating the 
far-off poles of L. 

3.2.2.3 Location of Far-off Poles 

The design specifications require that the far-off poles be located sufficiently 
to the left of line UVV ‘U ’ (Fig. 19) that no closed-loop pole is to the right of the line 
for maximum open-loop gain. Suppose that for K = 4 Kmm, a closed-loop pole pair is 
located at (W,%) in Fig. 22; i.e., at -30 kj 180. At W, the totality of poles and zeros 
near the origin appears as a single pole at the origin. The phase contribution of this 
pole at the origin to the point W is 100” , Consequently, the two far-off poles must 
contribute a total of 180 - 100 = 80” to W. It is easy to see that the locus of pole posi- 
tions that contribute 80” to W is a segment of a circle passing through W. Three points 
on this circle are quickly located. One must be a point on the negative real axis such 
that a double pole placed here contributes 2 x 40 = 80” to W. (See Fig. 22.) The other 
two points are on horizontal lines through W and w such that the first contributes 0” 
and the second contributes 80” (N and E in Fig. 22). This enables one to draw the 
circle shown. 
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Figure 22. Location of Far-off Poles 
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Suppose now that the two far-off poles are located at (Q, G). Since a closed- 
loop pole is to appear at W for K = 4 Kmm, we must have 

However, for a closed-loop pole to appear at R (Fig. 19), we must have, in 
addition, 

K 
@lW@lWW) (&W&U 

min = (zlR)(zl RI (123) 

If the Kmin calculated by (122) is substantially equal to the Kmin calculated 
by (123), then (Q,Q) is a permissible location for the poles. If not, another pole loca- 
tion along the circle is selected, and the process is repeated until the two Kmin are in 
good agreement. 

The Kmm thus determined is not necessarily the lowest possible, and these 
far-off pole locations are therefore not the best in the sense of smallest bandwidth. A 
new W point along UVV ‘U’ is chosen, and the process is repeated until the smallest 
K min (and therefore the minimum bandwidth) is found. 

This completes the design procedure. 

Remark: The concept of sensitivity in the large appears to shed new light on the ques- 
tion of exotic adaptive techniques for plants that exhibit wide parameter 
variations. The methods discussed above have been applied to aircraft and 
to re-entry vehicles(21)s (20) and h ave pointedly challenged the capability of 
adaptive methods to yield a superior system. 

As previously mentioned, the price paid for producing a prescribed insensitiv- 
ity is the large bandwidth of the resulting system. In some cases, an enor- 
mous gain-bandwidth requirement may be substantially reduced by first r 
employing minor feedback loops around the plant. 

There are possible limitations in the above approach due to noise and signal 
saturation. In this respect, it should be noted that the amount of plant satura- 
tion caused by the useful signal input is determined by the desired system 
performance and is completely independent of the performance is to be 
obtained, whether by ordinary feedback or by means of an adaptive system. 
The signal level in the plant is determined by the desired output; therefore, 
any two systems with the same plant, the same desired system transfer 
function, and the same output must have exactly the same plant-saturation 
problems with respect to the useful signals, or to the noise that enters at 
the same point as the useful signal. 
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Another serious limitation of ordinary feedback (and one that has not received 
much attention in the adaptive literature) is the inability to realize, even 
theoretically, any desired loop gain-bandwidth when the plant is nonminimum- 
phase (actually if it has at least two zeros or poles in the right-half plane). 
Therefore, it may be impossible to obtain the desired benefits of feedback by 
means of ordinary feedback structures. In this regard, Horowitz states@% 
“It would be a genuine and important contribution if it could be shown how ~ 
these desired benefits (insensitivity, disturbance rejection, etc. ), may be 
obtained by adaptive systems. However, once again, while the above has 
been rather vaguely cited in the literature as a justification for departing 
from ordinary feedback, there has not been any corresponding demonstration 
that the adaptive systems can do any better. One searches in vain in the 
adaptive literature for a clear-cut, quantitative statement of a problem which 
is shown to be intractable by ordinary feedback, but amenable to an adaptive 
design. ” 

3.3 SENSITIVITY AND OPTIMAL CONTROL 

A general formulation of the optimal control problem is the following. Given 
a system described by the vector differential equation 

2 = f (t, x, u, a) (124) 

x (to) = c (125) 

where x is a state vector, u is the control vector, and a is a vector representing a set 
of m plant parameters. The nominal value of the ith component of a will be denoted by 
aiO. The problem is to select the control vector, u, such that the index of performance 

t f 
J (to, x, u, ao) = 

f 
L(t,x,u,ao)dt + G[tf9 x(tf)] 

t0 

(126) 

is a minimum (or maximum). Note that the index of performance is based on the 
nominal value of a. Suppose that by one of the usual optimization methods, the optimal 
control is found to bet 

u*(t) = xf+ x(t), ao] (127) 

t The optimal control shown is closed-loop; that is, it depends on the current state of 
the system. For open-loop control, c would replace x(t) in (127). 
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We denote the corresponding index of performance by 

J*(to, x, ao) = Min J (to, x,U,ao) 
U 

W3) 

If the actual parameter vector instead of the nominal a0 is used, the incre- 
ment in performance index is given by 

AJ = J*(tO, x, a) - J*(to,x, ao) (129) 

AJ may be positive or negative, depending on how the system parameters 
vary. In other words, there may indeed by some combination of system parameters 
that yields an improved index of performance since the latter was optimized with respect 
to u only. Expanding J*(tO, x, a) in a Taylor series about the nominal system parameters. 
and discarding all but first-order terms reduces Eq. (129) to 

aJ*(to, x, a) 
AJ=x aa &ai 

i i 
ai=a. 

10 

(130) 

Following Pagurek(“), we define the performance index sensitivity function as 

SJ 
a J*(tO, x, a) 

= 
i (131) aai ai=aiO 

III certain cases, this sensitivity function may be expressed directly in terms 
of the given parameters of the system. One such case is the optimal control problem 
for the linear system 

i = AOx + BOu (132) 

y = GOx (133) 

x (to) = c 

with a quadratic performance index 

tf 
J(to, x, u, ao) = 

/ 
(yTQy + uTRu)dt + xT (tf)Mx (tf’ 

t0 

(134) 
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Here, A, B, G, Q, M, and R are constant matrices, t and the zero subscripts 
denote nominal values of the parameter vector, a. 

It is known(30) that for this problem, the optimal control vector is given by 

u*(t) = -R-l B;Po(t) x (t) (135) 

where PO(t) satisfies the matrix Riccati equation 

PO + POAO + Ao’Po - POBOR-‘B;PO + G,TQG 
0 

= 0 

PO ($1 = M 

(136) 

(137) 

and the optimal performance index is 

J*(t, x, ao) = xT pox (13 9) 

These results are also derived in another monograph of the present series (31). 

Now when the control, (135), is used with the actual (or perturbed) system 
parameter vector, a, instead of the nominal, ao, the motion is described by 

X = Ax -1 T 
- BR B. Pox = F(t)x (139) 

where 

F(t) = A - BR-‘B;Po (140) 

The solution of Eq. (139) is 

x (t) = a (t, to) c (141) 

where @(t, to) is the transition matrix (lo) for the system (139). Substituting (135) and 
(141) in (126), we obtain 

t f 
J*(to, x, a) = cT 

[ 
/ 

aTit, tO)Ql@(t, tO)dt + QT(tf, to) M@ ttp to) 

to I 

c (142) 

t We also make the usual assumption that the weighting matrices, Q,R, and M, are 
symmetric, positive definite. Actually it is sufficient for Q and M to be positive 
semi-definite. 
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where 

Ql = GTQG + POBOR-‘BtPo 

Eq. (142) is of the form 

J*(t,x, a) = xTPx 

where 

tf 
P(t) = 

/ 
@Tb,t)Q1 (T)@ (7, t)dT + aT(tp t)M4 (tf, t) 

t, 

(143) 

(144) 

(145) 

Noting that a(~, T) = I (the unit matrix) for all 7, we find the boundary 
condition 

P <tf> = M (146) 

If we differentiate Eq. (145) with respect to t using Leibnitz’s rule, we have 

t f 
i,= s d’;ryt)Ql (T)@ (7, t)dT + 

MT& t) 
dtf’ M @ ttf 3 t) 

t 

tf 

/ 

d@ (tp t) 
+ @T(ct)Ql(~)d'$ % + @Tt$,t)M dt - Q1 W 

t 

Noting that the transition matrix satisfies the relations(l0) 

deT(r, t) 
dt = - FT(t) eT (7, t) 

d@ (7, t) 
dt = - +(r,t)F(t) 

we obtain the following matrix equation for P. 

ti + FTP + PF + &I = 0 

P (tf) = M 

(147) 

(146) 

(149) 

(150) 

(151) 
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Itiseasytoseethat ifweputa=ao (i.e., A=Ao, B=Bo, etc.), then 

p 6) lama = p(Jw 
-0 

By virtue of (144), the sensitivity function, (131), becomes 

SJ = 
i 

cTE c 
aai 

I a.=a 1 i0 

But from (150), 

+ FTaP + aF 
T aF aQ1 

aai aai -p+piG 
-z() 

i 
+gF+ 

i aai 

We now define 

Pi(t) = g 
i 

and assume that 

ai’a i0 

an operation that is valid under mild restrictions on P. 

Then the performance index sensitivity function is given by 

SJ = 
i CTPiC 

where [after putting a = a0 in Eq. (154) and making use of Eq. (152)] 

-&P~+F~P~+P~F+Q~ = 0 

Pi (tf) = 0 

(152) 

(153) 

(154) 

(155) 

(156) 

(157) 

(156) 
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and 

(159) 

Thus, having the sensitivity function, (lS6), the increment in the perform- 
ance function due to prescribed increments 6af in the system parameter is obtained 
from Eq. (130) as 

AJ = xSf6ai 
i 

Remark: For the situation analyzed above, the calculation of the performance index 
sensitivity function is conceptually simple. However, it is readily apparent 
that in order to obtain numerical results, the use of a computer is virtually 
mandatory. The theory may also be eneralized to include nonlinear sys- 
tems. In this case, it can be shown( 8 ) that quantities J*(t, x, a) and J*(t, x, ao) 
of Eq. (129) each satisfies a type of Hamilton Jacobi equation. However, as 
may be expected, the computational aspects become overwhelming. 

We may note also that the sensitivity function defined in this section is not 
the only one that could be used. Rohrer and Sobral(28) suggest the use of a 
relative sensitivity function. This is defined as follows. 

At the plant parameter, a, the relative sensitivity for the control, u(t), is 
defined as the difference between the actual value of the performance index 
and the value that would be obtained if the control were the optimal for the 
plant parameters, a (divided by the optimal performance index for 
normalization). 

SJ = J (a, u) - J (a, u*) 
a IJ(%u*)I 

(161) 

Among the obvious advantages of this definition is that S,” is always a posi- 
tive number. Moreover, the relative sensitivity reduces to zero at the value 
of the plant parameters for which the control, u(t), is optimal. System 
performance is always compared with an attainable value. This eliminates 
a disconcerting element in the Pagurek theory above; namely, that off- 
nominal values of the system parameters may actually improve the per- 
formance index. Further studies are necessary to establish the superiority 
of one method over the other. 
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APPENDIX 

LINEAR SYSTEM RESPONSE IN TERMS 
OF EIGENVECTORS 

Consider the unforced dynamic system described by 

ic = Ax (Al) 

x(0) = c VW 

where x is the state vector (II x 1 matrix), A is a constant n x n matrix, and c is the 
initial condition vector. 

If the ith eigenvalue of A is denoted by Ai (assumed distinct) and the corres- 
ponding eigenvector by ui, then 

A ui = Xi ui 

i = 1, 2, . . . . . n 

and 

uTu T 
i j = u. u. = 0 

J 1 
whenever i # j 

Eqs. (A3) and (A4) are well known properties of eigenvectors. 

The modal matrix for A may be written as 

M = ul u2 . . . . . . . . un 1 

(A3) 

(A4) 

After calculating the inverse, we express it in the form 
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where vi is a row vector (1 x n matrix). By virtue of the relation 

M-lM = I 

it follows that t 

v. u. = 6 
1 J ij 

where 6. . is the Dirac delta function. 
11 

Now any vector, x, can be represented as 

n 
x = c 5 u i i 

i=l 

where the 5 i are appropriate scalars. 

Premultiplying (A6) by vk, 

n 

‘k 
x=v 

k c 5 i Vk ui 
i=l 

and summing over all k, 

n 

c 
k=l i=l k=l i=l k=l 

by virtue of (A5). 

It follows that 

5, = VkX 

(A5) 

GW 

(A7) 

t In the language of formal matrix theory, the set of vectors {ui] is said to form a 
basis, and the set of vectors [vj] is the reciprocal basis. 
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and therefore 

n 
x= c v. x u. 

i=l l 
1 

Using this result, we may write 

n 
Ax =A 

c vi x u. 1 
i=l 

But since (vi x) is a scalar, we may transpose to 

n n 
Ax = 

c (vi x) A u. = 
1 c 

(Vi x) A. u. 
11 

i=l i=l 

after applying (A3). Finally, 

n 
Ax = 

c Ai ui vi x 
i=l 

which leads to 

n 
A =c Xiuivi 

W3) 

(A% 
i=l 

Now the solution of Eq. (Al) may be written in the form 

n 
x = c cYi w ui (AW 

i=l 

where the 0~. (t) are scalar functions of time to be determined. In view of Eqs. (A2) 
and (AlO), $e have 

n 
c = c ai (0) ui 

i=l 

or 

cYi (0) = vi c 

using (A7). 

VW 
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Substituting Eq. (AlO) in (Al), we find 

n 

c t3.u. = 
i=l l ' 

A2 aiui =k 
n 

ai Au. = 
1' c = Q. Ti u. 

1 1 
i=l i=l i=l 

using (A3). 

Therefore 

ci! i = xi a. 
1 

03 12) 

The solution of this equation, subject to the initial condition (All), is 

v 
ai (t) = e vi c (A131 

Consequently, after substituting Eq. (A13) in (AlO), we obtain 
n hit 

x = c e v. c u. 
1 1 

i=l 

or, equivalently, 

n Xit 
x = c e ui v. c 1 

i=l 
(A141 

This is the result sought. It expresses the response of the system as a 
weighted sum of the individual modes. 

Since the solution to Eq. (Al) may be expressed in the equivalent form 

At 
x=e c (A15) 

a comparison of (A14) and A15) shows that 

n 
eAt c 

Xit 
= e u. v. 1 1 

i=l 
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